Monday, August 24, 2015

Microsoft Unveils Keyboard Cover with e-Ink Touchscreen


Microsoft has developed a new touchscreen e Ink touchscreen keyboard panel that might be built into your next laptop or keyboard accessory for a tablet PC.

The Microsoft DisplayCover is a peripheral cover designed for compact touch-enabled laptops. A tactile keyboard affords users with the comfort and ease of use provided by physical keys. A thinfilm e-ink display with a resolution of 1280 x 305 pixels extends the available screen real estate of the slate device by up to 8% (based on a Microsoft Surface Pro 2 with a 10.6", 1080p, 208ppi screen).  Microsoft basically selected e Ink  due to the bistable nature of electrophoretic ink, reducing the secondary screen's impact on battery life.
Microsoft is hoping to add a series of widgets in order to be compatible with a stylus. They are also going to be implementing pinching and zooming alongside trackpad functionality.

Amazon Technology Officer Jumps Ship to Google


Jon McCormack, the chief technology officer at Amazon was responsible for overseeing the teams making software for the Kindle, Fire phone and Amazon TV. He has left Amazon to take up a job at Google's Advanced Technologies and Projects group.

According to Re/Code McCormack first left Amazon late last year, but he returned in March after a two-month stint at Yahoo. At Amazon, McCormack most recently reported to David Limp, who runs the entire devices business and is one of only a handful of senior vice presidents at the company.

With such a major executive leaving Amazon it certainly puts the future of hardware in jeopardy. I have been following Amazon products since 2007 and basically they are much akin to Apple, in the respect they constantly release small incremental updates. This is hardly a challenging environment and I am not surprised he has left.

At Google, McCormack will build out an ecosystem of developers to contribute to Google's Advanced Technologies and Projects group, according to a spokesperson. ATAP is led by Regina Dugan, the former head of the Pentagon's research group, DARPA, who has described her group's mission as "trying to do epic shit." It is designed to tackle ambitious projects — like augmented reality and wearable tech.

Should there be a e-Book VAT Exemption for Schools in Europe?

Selling e-books in Europe is challenging, since the VAT rules keep changing. Amazon, Barnes and Noble, Kobo, Google and Apple used to be based out of Luxembourg to sell their digital books, since they could get away with charging  3% VAT on e-books in every country in Europe. On January 1st 2015 the European Commission mandated that VAT will be payed based on where the buyer is located and not the seller. The United Kingdom, for example has a 20% VAT on e-books but does not charge any tax at all on print.  Why is there such a price difference between digital and print? This is primarily because according to EU law, reduced VAT rates can apply only to goods, not e-services.

Fundamentally e-books have no clear path of ownership because they are licensed to a particular user. When you “purchase” a title from Amazon, Apple, Google or Kobo you are entering into a complex agreement where the company acts as an agent on behalf of the publisher.

Some countries, such as Poland, are not just sitting back and letting the gulf between print and digital widen further. A number of Polish judges have petitioned the European Court of Justice to look into making the e-Book VAT mirror print.

Every European country has different rates of VAT that it charges for digital and print. This has become increasingly difficult for schools, colleges and universities to invest into e-textbooks and e-books in an meaningful way. Most institutions of learning cannot build an effective e-book library due to the exorbitant cost and this has resulted in massive print collections.

In North America there are plenty of players in the $14 billion dollar e-textbook business such as Chegg, Coursesmart, Vitalsource and Yuzu.

When it comes down to it, at least in North America it makes sense for schools to invest in digital. Apple, Aruba Networks, Chegg, Discovery Education, Idaho Department of Education, Houghton Mifflin Harcourt, Inkling, Intel, Knewton, Kno, the LEAD Commission,  McGraw-Hill, News Corp, Pearson, Samsung, Sprint, and T-Mobile talked recently collaborated with the FCC for a meaningful report. They found that a traditional learning environment, including traditional textbooks, paper, technology and connectivity, costs an estimated $3,871 per student per year. Whereas a learning environment today, including digital learning content, devices,
technology and connectivity, costs an estimated $3,621 per student per year.

Meanwhile in Europe there are hardly anyone participating in digitized textbook arena. When countries such as Poland try and make sweeping changes they devote a paltry $1 million US to the entire educational system, which is just enough for 62 e-textbooks per school. Obviously this is not enough to be even a drop in the bucket.

I think schools, colleges, universities and libraries should be exempt from VAT in order to encourage them to invest into digital and allow students to be able to buy and read them on their Android, iOS or e-reader. It would be far easier to coordinate on a government level some sort of VAT exemption then to try and reverse the decision that e-books are a service and not a product. Not only would this be good for the entire educational system but the European startup scene.

Celebrate Read an eBook Day and win content credit from OverDrive!

We are excited to share that OverDrive will once again be celebrating Read an eBook Day on September 18th. This year we’re giving away four separate content credits of $2,500 to libraries who are celebrating Read an eBook Day. Simply mention OverDrive in a social media post using the hashtag #eBookLove and to share how your library is celebrating.  Throughout the day, OverDrive will randomly select four libraries as winners.*

RAEBD_300x250-graphic_v2The purpose of Read an eBook Day is to celebrate digital reading as a great way to connect readers with their libraries and authors they love. Given that September is Library Card Sign-up Month we think Read an eBook Day is the perfect time to introduce all your new users to your digital collection! Libraries and users alike are encouraged to share what they’re reading and how they are celebrating on social media and join the #eBookLove conversation. You can also send users to for reading recommendations based on their favorite genres.

To help spread the word and get your community excited about your digital library we have three quick promotional ideas for you to use:

  1. Issue a press release to your local news outlets. We've created a template you can download here.
  2. Put a link to your digital collection prominently on your library website (We have provided 3 graphics you can use here, here and here).
  3. Use these marketing materials to promote both inside and outside your community


We hope that you will join us in celebrating digital reading and help bring new users to your library!



*Official rules can be downloaded here.


Astro Pi: Mission Update 5 – flight safety testing


The road to space is long and winding, but the two Astro Pi flight units are almost there! The next thing for us after this is to hand over the final payload to the European Space Agency so it can be loaded onto the Soyuz-45S rocket for launch on December 15th with British ESA Astronaut Tim Peake.

To be allowed on the rocket, you need a flight safety certificate for your device, and these can only be obtained by presenting a whole host of measurements and test results to a panel of experts at ESA ESTEC in Holland.

The expertise and equipment to carry out many of these tests is well outside the capabilities of the Raspberry Pi Foundation, and without the facilities and personnel available through our UK Space partners this would not have been possible – we’ve had to use facilities and partners all over Europe to get the work done.

I’ll list below the tests that were done approximately in chronological order starting from March.

Power integration test

AIRBUS Defence and Space, Bremen, Germany >

Once in orbit, the Astro Pi will have two ways of getting power. It can use an AC inverter (above) that allows the crew to use all kinds of standard domestic appliances (like a normal USB power block); it’s also able to get power from any laptop USB port.

It is likely that when the Astro Pi is deployed in the Columbus module we will run from an AC inverter, but when we’re in the Cupola module we’ll just draw power from one of the laptops which is also there.

To gain permission to draw power from a laptop like this we needed to do a power integration test, to evaluate that the electrical load doesn’t have any adverse effect on the laptop.


The most common laptop on the ISS is the IBM Thinkpad T61P (circa 2007 from before Lenovo acquired them – Eben also uses one of these). Pictured above is an identical ground laptop with a special USB current probe connected to an oscilloscope. Note that this was done before we had the aluminium flight case, so you’re just seeing the Sense HAT, Raspberry Pi and camera parts of the whole Astro Pi unit.

The flight hardware was then powered up through the current probe so the oscilloscope could measure current inrush as well as maximum current when using the Astro Pi at max performance. Some diagnostic software was then used to check that there were no adverse affects experienced by the laptop.

Coin Cell Battery

Surrey Satellite Technology, Guildford, UK >

Since the Astro Pi will not be connected to the LAN on the ISS the only means it has of keeping the correct time is with a Real Time Clock (RTC) and a backup battery.

The flight stack up for Astro Pi is as follows:

  1. Raspberry Pi B+
  2. Custom RTC Board (has coin cell holder and push button contacts)
  3. Sense HAT

Batteries on the ISS have a whole host of possible hazards associated with them, and so any battery flown is subject to a stringent set of batch tests.

Astro Pi has a batch of eight Panasonic BR-1225 coin cells which were all tested together. Here is number 5, which is one of the ones that will fly:


The test procedure involved visually inspecting the coin cells, measuring their width and size with callipers, testing their voltage output during open circuit and under load followed by exposing them to a vacuum of about 0.6 bar (~450 mmHg) for two hours.

Afterwards the measurements were redone to see if the coin cells had leaked, deformed or become unable to provide power.

Conformal Coating

Surrey Satellite Technology, Guildford, UK >

One of the safety requirements for circuit boards in space flight is that they are coated in a protective layer, rather like nail varnish, called conformal coating. This is a space grade silicone-based liquid that dries to form a hard barrier. In microgravity a metallurgical phenomenon called tin whiskers occurs. These are tiny hairs of metal that grow spontaneously from any metallic surface, especially solder joints.

The hazard here is that these little whiskers break off, float off and become lodged somewhere causing a short circuit. So the conformal coat has two purposes. One is to protect the PCB from any invading whiskers, and the other is to arrest any tin whiskers that may grow, and prevent them breaking free.


For the Sense HAT (above) we needed to define a number of keep out zones for the coating so as not to compromise the pressure and humidity sensors. The surfaces of the LEDs were not coated to avoid dulling their light too. If you look closely you can see the shiny coating on the HAT; in particular, see the joystick bottom right.

It’s much easier to see on two camera modules:




AIRBUS Defence and Space, Portsmouth, UK >

Vibe testing is not actually required for safety, but we undertook it anyway as insurance that the payload would survive the vibration environment of launch. The testing involved placing an Astro Pi into some flight equivalent packaging and strapping it down onto a vibe table.

The vibe table is then programmed to simulate the severity of launch conditions on a Soyuz rocket.

The tests needed to be done in x, y and z axes. To accomplish this two different vibe tables were employed, one for up and down (z, see above) and one for back and forth (x and y, see below).

After the vibration sequence the Astro Pi was tested to ensure the vibration had not caused any issues, the case was also opened and the interior was inspected to ensure no connections had become loose.

Electromagnetic Compatibility (EMC)

AIRBUS Defence and Space, Portsmouth, UK >

EMC is the study and measurement of unintended electromagnetic signals that could interfere with other electronics. Almost all electronic devices these days undergo EMC testing in order to get CE or FCC markings. The Raspberry Pi B+ and Sense HAT both carry these markings; however their test results were obtained in a home-user setup, with a keyboard, mouse, HDMI monitor and Ethernet all connected.

The Astro Pi flight unit will be used without all of those. So these tests were required to ensure that, when used in this way, the Astro Pi doesn’t cause any problems to other systems on board the ISS (like life support).

The tests were conducted in a special EMC test chamber. The walls are lined with super-absorbent foam spikes that exclude all electromagnetic signals from coming into the room from the outside.

That way, any electromagnetic signal measured must have originated inside the room.

A test script was run on the Astro Pi to stress it to maximum performance while a series of antennae were used to examine different ranges of the electromagnetic spectrum.

A set of electromagnetic susceptibility tests was also conducted to evaluate how the Astro Pi would behave when experiencing strong magnetic fields.

No issues were found, and all tests passed.

Off Gassing

ESA ESTEC, Noordwijk, Holland >

The off-gassing test is done to ensure the payload does not give off any dangerous fumes that might be harmful to the crew.

The test involves placing the payload into a bell jar and pumping out all of the air. Synthetic air of known properties is then pumped in, and the whole jar is held at 50 degrees Celsius for 72 hours. Afterwards the synthetic air, plus any gasses released by the payload, are pumped out and analysed using a mass spectrometer.


If you look closely, you can also see some Raspberry Pi SD cards in there. The test needed to be representative of the entire payload, so it’s one of the flight units plus five SD cards. The resulting measurements were then just doubled to account for two Astro Pi units with ten SD cards.

Thermal Capacity

Raspberry Pi, Cambridge, UK

This test needed to demonstrate that no touchable surface of the Astro Pi flight case would ever reach or exceed 45 degrees Celsius.

In microgravity the process of convection doesn’t occur, so the case was designed with thermal conduction in mind. Each of the square pins on the base can dissipate about 0.1 watts of heat. We also wanted to avoid any fans as these cause EMC headaches and other problems for safety (moving parts).

We used five temperature probes connected to another Raspberry Pi for the data logging. Four of the probes were placed in contact with the surface of the aluminium case using small thermal pads and kapton tape (HDMI side, base by the camera, SD card slot side and top side). One was used to monitor ambient temperature some distance away. The Astro Pi was then placed inside a small box to simulate the reduced airflow on board the ISS and was then stressed to maximum performance for four days.

The results showed that an equilibrium was reached fairly quickly where the only input into the system was the fluctuation of ambient temperature.

Sharp edges inspection

ESA ESTEC, Noordwijk, Holland >

This test was almost a formality, but was done so ESA could verify there were no sharp edges that could cause harm to the crew. The test was done using a special piece of fabric that was dragged over the surface of the flight case. If it snags then the test is failed, but thankfully we passed without issue first time.

The test is important because a crew member with a cut or infected hand is a serious problem on orbit.

Experiment Sequence Test

ESA-EAC, European Astronaut Centre, Cologne, Germany >

The experiment sequence test is a full end-to-end reproduction of everything that Tim Peake will do on orbit. It was done in a replica of the ISS Columbus module on the ground.

On orbit they have step by step procedures that the crew follow and these tests are an opportunity to improve and refine them. There is a procedure for deploying the Astro Pi, one for powering it from the ISS mains, and another for powering via laptop power. There is one for fault finding and diagnostics and also one for getting files off the Astro Pi for downlink to Earth.

The tests used a surrogate crew to play the role of Tim Peake. Each procedure was run, and any anomalies or problems that caused a deviation from the procedure were noted.

The Astro Pi will run a Python program called the MCP (master control program*) and this oversees the running of the competition winning code from the students. It is designed to monitor how long each has run for, and ensures that each receives the allotted run time, despite the Astro Pi being, potentially, rebooted multiple times from single event upsets due to the radiation environment on the ISS.

There were a couple of minor issues found, and we’re required to repeat one of the tests again in September. But otherwise everything worked successfully.

All the test reports are then combined into a Flight Safety Data Pack (FSDP). This also includes a flammability assessment which is an examination of all materials used in the payload and their risk of being a flame propagation path on the ISS. The main heavy lifting with the FSDP documentation was done by Surrey Satellite Technology, whom we’re eternally grateful to.

Thanks for reading if you made it this far! Next mission update will be after we’ve handed over the final payload.

The post Astro Pi: Mission Update 5 – flight safety testing appeared first on Raspberry Pi.

e-Books and Audiobooks Subject to GST in Australia


Australia has just passed a controversial new bill that would tax all online imports with a 10% GST starting in July 2017. In a few short years e-Books and audiobooks will increase in cost if purchased from major companies such as Amazon, Apple and Google.

The new GST tax increase will not affect foreign businesses with a turnover of less than $75,000 and will be exempt, this falls in line with the current system in regards to small Australian businesses.

“We are going to have taxation officials travel around the world visiting these companies asking them to register for GST purposes,” federal Treasurer Joe Hockey said.

Mr Hockey said he had no idea of how much revenue the extra tax would bring, but it was certain to exceed the cost of collection because Australian officials would not be asked to open parcels to check whether tax had been paid.

This is a delicate new framework because tax collectors will have to establish a working relationship with over 50 companies that account for the vast majority of digital and traditional content in Australia.