After a lot of swearing and arguing, we have managed to boil down nearly 700 entries to just ten winners. It was a very hard decision, and if you didn’t win please don’t feel too disheartened; we had some really exceptional entries for this competition and found it really hard to come to a final decision. As you’ll remember if you entered, we were looking for camera projects which would involve the winners in writing some software and doing something interesting with the cameras. The winners, who will receive a rare-as-hen’s-teeth pre-production Raspberry Pi camera board, are (in no particular order): Brian Pratt Brian’s was one of several cat-thwarting project ideas we were sent, but we liked his best. Brian’s cat has a habit of bringing half-dead things home for his master through the catflap, and he’s been trying to deal with the problem by using a webcam/Arduino/PC solution with some custom Python code to detect feline mouthfuls of rat. He wants to replace the setup with a Pi and a camera module so he can get better framerate and better resolution at lower cost and lower power. (You’re right, Brian. Using an Arduino just to control a relay is overkill.) We liked your Nerf gun idea, Brian, but we also felt sorry for your cat, so it’s the rat-detecting catflap we’d like to see developed, please! Matthew Mittler We had several outstanding entries from younger contestants. Matthew’s was one of them. He’s 12, and has an idea for using the camera as a communication tool – we got very excited about this, because we can think of all kinds of useful applications for what Matthew’s planning to build. He says:
Matthew says he also has some ideas about using the camera in a one-player chess board. We’re really looking forward to seeing what he develops. Ross Corriden Ross is a postdoctoral fellow in a microbiology lab, who studies novel ways of combating antibiotic-resistant bacteria. He tests compounds to investigate their effect on bacterial growth, and their ability to enhance the body's own defences against pathogens. One of the tests he uses on a daily basis involves exposing bacteria with white blood cells that are isolated from healthy volunteers. White blood cells represent the main line of defence against pathogens and will kill most bacteria they are exposed to, though by adding drugs Ross can either enhance or inhibit their bactericidal capacity. The tedious part of these experiments involves counting the tiny colonies bacteria form on petri dishes after overnight incubation. Counting visually is time-consuming and prone to error. Ross’s winning project idea is to use a Raspberry Pi with a camera to count the colonies using ImageJ image analysis software with a custom colony-counting module. He says the small size of the colonies will make this type of analysis a challenge, but says that if he can get the system to work it would save his lab massive amounts of time, freeing up attention for more experimental work. Sebastian Lieberknecht Sebastian’s working on an augmented reality project. He’s developing a cross-platform SDK that can recover the location and orientation of a camera relative to a known piece of the environment. The camera can be “taught” about local 3D objects, or “taught” to recognise 2D patterns. He wants to integrate the video stream from the camera into the SDK, then track a 2D planar pattern and display a virtual character on it, using the HDMI output to display the scene on an external monitor. He got our attention when he proposed doing this with a virtual model of a Raspberry Pi on the Raspberry logo. Steven Daglish Stephen works for a charity designing and implementing medical engineering training courses for developing countries. He specialises in medical devices, with a particular interest in equipment related to premature babies – such as incubators, monitors, and jaundice detection. He says:
Matt Wherry Matt had a fantastic idea when researching building a theramin. A regular theramin gives you control of pitch and volume only, with two hands and two aerials. His competition entry was an idea for a camera theremin, where, using a camera and some machine vision instead of an aerial, both pitch and volume can be controlled with one hand, leaving the other one free to fiddle with synth parameters.
I did a little dance around the room when I read this one. Thanks Matt! Amy Appler Amy is 11, and she has a really excellent blog that we’ve been enjoying at http://appler.net/amy/. She’s already a seasoned Pi hacker. She says:
We have a feeling that Amy will complete her project with flying colours. (And we’re hoping for some great pictures too!) Andy Grove Andy’s project involves a life-sized robotic Dalek which he’s already built. Gordon was open-mouthed with awe and fear at the photo which Andy sent in: Andy sent us the code for the Arduino-based Dalek voice modulator he’s been working on to demonstrate his chops; you can download it at GitHub. His camera application will use OpenCV to do facial recognition on the Pi, which will then drive two motors in the head to rotate the dome so that the Dalek can keep eye contact with a person while talking to them. (I can only think of one thing the Dalek is likely to say, but Andy promises us a much larger vocabulary than the usual “Exterminate!”) He plans to open source the results. Adam Farah Adam’s entry made us laugh, but it’s got serious potential as a useful addition to everybody’s living room (and promises to build healthy relationships everywhere).
We’d love it too, Adam. And if you can now come up with something that outsources the argument about whether you watch Grand Designs or allow your partner to flick wildly between music TV channels for the next hour, we’d be even happier. David Crawley (and the HackerDojo robotics team) David is heading up a robot project at Hacker Dojo in Silicon Valley, which he describes as “a makerspace filled with free thinkers”. (I’ve never met a constrained thinker in a hackspace/makerspace. There’s something curiously liberating about milling machines.) Hercules, Hacker Dojo’s Pi-powered robot, is newly under development, and is working through 12 challenges that David has set the team of volunteers, ranging from seeing and following a person, to delivering a cooler of beer (the prize for the team that accomplishes this is that they get to keep the cooler of beer), or driving around the Hacker Dojo for a week saying hello to known people, and finding and identifying a persona non-grata (this requires algorithms to efficiently move around the Dojo and find people who might be trying to hide, as well as doing all the person detection/ face detection/face recognition work). He says:
We’ll be watching to see how Hercules gets on with the tasks he’s been set once he’s equipped with his new eyeball! – Thank you so much to everyone who entered. We were pretty overwhelmed by the quality and number of entries; this is an amazing community packed with some amazingly smart people. We’re looking forward to hearing from all the winners when they’re further along with their projects, and learning how the camera coped in these very different applications. |
A Semi-automated Technology Roundup Provided by Linebaugh Public Library IT Staff | techblog.linebaugh.org
Tuesday, March 26, 2013
Camera competition winners!
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment